If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7(x + 2) + -7(x + 3) + -3x = x(3 + 6) + -3(3) Reorder the terms: 7(2 + x) + -7(x + 3) + -3x = x(3 + 6) + -3(3) (2 * 7 + x * 7) + -7(x + 3) + -3x = x(3 + 6) + -3(3) (14 + 7x) + -7(x + 3) + -3x = x(3 + 6) + -3(3) Reorder the terms: 14 + 7x + -7(3 + x) + -3x = x(3 + 6) + -3(3) 14 + 7x + (3 * -7 + x * -7) + -3x = x(3 + 6) + -3(3) 14 + 7x + (-21 + -7x) + -3x = x(3 + 6) + -3(3) Reorder the terms: 14 + -21 + 7x + -7x + -3x = x(3 + 6) + -3(3) Combine like terms: 14 + -21 = -7 -7 + 7x + -7x + -3x = x(3 + 6) + -3(3) Combine like terms: 7x + -7x = 0 -7 + 0 + -3x = x(3 + 6) + -3(3) -7 + -3x = x(3 + 6) + -3(3) Combine like terms: 3 + 6 = 9 -7 + -3x = x(9) + -3(3) Reorder the terms for easier multiplication: -7 + -3x = 9x + -3(3) Multiply -3 * 3 -7 + -3x = 9x + -9 Reorder the terms: -7 + -3x = -9 + 9x Solving -7 + -3x = -9 + 9x Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-9x' to each side of the equation. -7 + -3x + -9x = -9 + 9x + -9x Combine like terms: -3x + -9x = -12x -7 + -12x = -9 + 9x + -9x Combine like terms: 9x + -9x = 0 -7 + -12x = -9 + 0 -7 + -12x = -9 Add '7' to each side of the equation. -7 + 7 + -12x = -9 + 7 Combine like terms: -7 + 7 = 0 0 + -12x = -9 + 7 -12x = -9 + 7 Combine like terms: -9 + 7 = -2 -12x = -2 Divide each side by '-12'. x = 0.1666666667 Simplifying x = 0.1666666667
| 6m^3-m^2-24m+4=0 | | -11=-45x+110+100x | | -4x+10+5x=7+x+3 | | 12x^2-24x+10=0 | | 1.5x-7=-4 | | 2x^2+5x+39=0 | | 4x^2+24x+4y^2+4y=27 | | 4.2x+3.9=-3x+6.1 | | 16p^3=4p | | 4x^2-(-1x)-5=0 | | -x+y-z=-5 | | 2m-m=m(2+3) | | 5a+4-2a= | | -256=-63v+84-70 | | 1d-3d-2d=1d-2d-3d | | 5n+3=8n-3 | | X-y-z=0 | | 3x-5(2y-1)=5x+17 | | 2(0)-3y=7 | | y=-5x^4+6x^2+1 | | 12x^2-24x+1=0 | | -5x+3=-6x-9 | | 4x-5=9x-30 | | 8y-5=8x+2 | | -47=7+5u | | 4.905t^2-5t-100=0 | | 6.8+2.5n=n+38.8 | | 12b+3=(-2)b-4 | | 7x-1=-4x-23 | | -115=-42b-27b | | 7-8k-8k=-9(k+3)+5(k-10) | | 0=2-5x+4x^2-x^3 |