If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(x+1)+5x(2-x)=3(x-1)
We move all terms to the left:
7(x+1)+5x(2-x)-(3(x-1))=0
We add all the numbers together, and all the variables
7(x+1)+5x(-1x+2)-(3(x-1))=0
We multiply parentheses
-5x^2+7x+10x-(3(x-1))+7=0
We calculate terms in parentheses: -(3(x-1)), so:We add all the numbers together, and all the variables
3(x-1)
We multiply parentheses
3x-3
Back to the equation:
-(3x-3)
-5x^2+17x-(3x-3)+7=0
We get rid of parentheses
-5x^2+17x-3x+3+7=0
We add all the numbers together, and all the variables
-5x^2+14x+10=0
a = -5; b = 14; c = +10;
Δ = b2-4ac
Δ = 142-4·(-5)·10
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{11}}{2*-5}=\frac{-14-6\sqrt{11}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{11}}{2*-5}=\frac{-14+6\sqrt{11}}{-10} $
| 2,1/3c=2,1/10 | | X²+8x–7=0 | | 8,534+x=8,678 | | x-5.4=11.7 | | Z=6+10i | | 5.6x+2=4.6× | | 2z+1/9=z/3 | | 2y+2=72 | | 2x+14=35+5x | | 8x-4=-6+7 | | 3(x-2)+2(x-3)+(x-4)=3x-1 | | X-1.5y=14 | | 10(c)=1.7 | | 14=u/2-10 | | 15x+20=10x+60 | | x/15-14=19 | | 7(y–6)=7y+42 | | 8x-33=4x-5 | | 3(x-7)=-4(x-21) | | 7x-37=4x+6 | | 1.2x=9.2 | | -8=-12+4t | | (8x+5)+(3x+12)+(4x+8)=180 | | 5-6t=35 | | 62+(6x-9)+(4x+7)=180 | | 4(3x-x)=9x-7 | | 5v^2-30v=-40 | | 9+3(3x+5)=9(3x-1)-3 | | 8(x-2)+(x-1)-3(1+x)=-2 | | 7(d=2)=5(d+2) | | 13-2(2x-3)=2x+1 | | 2(4x-4)4x+5=-111 |