If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(2y-8)14y+56=0
We multiply parentheses
196y^2-784y+56=0
a = 196; b = -784; c = +56;
Δ = b2-4ac
Δ = -7842-4·196·56
Δ = 570752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{570752}=\sqrt{3136*182}=\sqrt{3136}*\sqrt{182}=56\sqrt{182}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-784)-56\sqrt{182}}{2*196}=\frac{784-56\sqrt{182}}{392} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-784)+56\sqrt{182}}{2*196}=\frac{784+56\sqrt{182}}{392} $
| 10-2m=-4m-14 | | (1.25x+4)=(1x+6) | | w/2+ 4=6 | | -10n=-8n+4 | | (1.25x+4)=(1x+6 | | 7(2y-8)-15y+25=0 | | y/9− 36=–34 | | 9p-4=-9 | | -5+m=-2m-2 | | 40x^2-21=0 | | -17y-12=-148 | | 3(5x+9)=49+46 | | -36=-7r | | 3p+4p+p=8 | | 2x+10=-9x-12+9x | | 2d=(d+12+12) | | 5(4y-3)=45 | | 250-35x=100-25x | | 101=x-14 | | 7m=7m+16 | | -3b=2=4b+9 | | 2y-8-6y=4y-6-2 | | 5000+x=5000x | | 250+35x=100+25x | | 2x-15x=0 | | 3x=-4+3x | | 7x^2+77x=-196 | | (8x+21)+(10x-5)=180 | | 5x+80=-140+2x | | -3(w-19)=9 | | 7(1−7x)+5x=227 | | 6x-9x-7x+x=0 |