7(2x+20)=4/7x

Simple and best practice solution for 7(2x+20)=4/7x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(2x+20)=4/7x equation:



7(2x+20)=4/7x
We move all terms to the left:
7(2x+20)-(4/7x)=0
Domain of the equation: 7x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7(2x+20)-(+4/7x)=0
We multiply parentheses
14x-(+4/7x)+140=0
We get rid of parentheses
14x-4/7x+140=0
We multiply all the terms by the denominator
14x*7x+140*7x-4=0
Wy multiply elements
98x^2+980x-4=0
a = 98; b = 980; c = -4;
Δ = b2-4ac
Δ = 9802-4·98·(-4)
Δ = 961968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{961968}=\sqrt{784*1227}=\sqrt{784}*\sqrt{1227}=28\sqrt{1227}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(980)-28\sqrt{1227}}{2*98}=\frac{-980-28\sqrt{1227}}{196} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(980)+28\sqrt{1227}}{2*98}=\frac{-980+28\sqrt{1227}}{196} $

See similar equations:

| 14-2(a+1)=6+a | | 2.4=5.1+y | | 8x+1=x+17-x | | 19+1.50c=15+2.75c | | x^2+14^2=29^2 | | -2a+6=3 | | h3=12 | | 2x+85+x+95=90 | | 5x-9=8-7 | | 9x+2=-8+7 | | r-62/9=93/4 | | 3w+8w=w | | 2x+85=x+95 | | 9x+2=-8+7x | | x^2+21^2=24^2 | | 3(7-3t)=2(4t—15) | | 9=5x5 | | 2.5x=130+10x | | 6×k=18 | | (8x-1)^2=-81 | | 3y+20=5y+-16 | | Q=π25h | | 2x-3=6x-18 | | 1/4(24x-8)=10 | | 45+2x+5=180 | | 118=2+4(1-4k) | | 2x+85+x+95=180 | | 3.6k=7.56 | | -4(5n+6)=136 | | x^2+44^2=49^2 | | x^2+12^2=20^2 | | 8b+8-4b=0 |

Equations solver categories