7(2m-1)-3m/5m=6/5(4-3)

Simple and best practice solution for 7(2m-1)-3m/5m=6/5(4-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(2m-1)-3m/5m=6/5(4-3) equation:



7(2m-1)-3m/5m=6/5(4-3)
We move all terms to the left:
7(2m-1)-3m/5m-(6/5(4-3))=0
Domain of the equation: 5m!=0
m!=0/5
m!=0
m∈R
We add all the numbers together, and all the variables
7(2m-1)-3m/5m-(6/51)=0
We multiply parentheses
14m-3m/5m-7-(6/51)=0
We get rid of parentheses
14m-3m/5m-7-6/51=0
We calculate fractions
14m+(-153m)/255m+(-30m)/255m-7=0
We multiply all the terms by the denominator
14m*255m+(-153m)+(-30m)-7*255m=0
Wy multiply elements
3570m^2+(-153m)+(-30m)-1785m=0
We get rid of parentheses
3570m^2-153m-30m-1785m=0
We add all the numbers together, and all the variables
3570m^2-1968m=0
a = 3570; b = -1968; c = 0;
Δ = b2-4ac
Δ = -19682-4·3570·0
Δ = 3873024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3873024}=1968$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1968)-1968}{2*3570}=\frac{0}{7140} =0 $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1968)+1968}{2*3570}=\frac{3936}{7140} =328/595 $

See similar equations:

| 6-4x=7x-9x+10x | | 0.5x+45x=108 | | 2*(5a-3)-a-4(3a-2)=0 | | 3x/2+7x/12=3600 | | 8x2+6+5=0 | | 9x+x-12=18 | | 12v-7v=40 | | x10=1/3 | | 5x−18=3x=42 | | 4x+1=-36 | | h/7-6=1 | | 3k+6=5k+10 | | k/1.6=3 | | 12-2x=8x+36 | | 6=3n=n+5n | | 1+2/5w=1+3/10 | | 33-9x=16+8x | | 8/1=x/12 | | 3c/5=2 | | x=9=5x-11 | | 10z=10,000,000,000 | | 13x+51+90=180 | | -3m+8=26+m | | 14x+34+90=180 | | 3x+11=109 | | 10x+20x+90=180 | | 2(12+x)=@x+24 | | 3(4+x)-7=2 | | 16-4y-4y-y²-y²=8 | | -4(1+5m)=-6(6+4m) | | 7x-9+5=5x-6 | | 27-3x=18+6x |

Equations solver categories