7(2m-1)-3/5m=6/5m=6/5(4-3m)

Simple and best practice solution for 7(2m-1)-3/5m=6/5m=6/5(4-3m) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(2m-1)-3/5m=6/5m=6/5(4-3m) equation:



7(2m-1)-3/5m=6/5m=6/5(4-3m)
We move all terms to the left:
7(2m-1)-3/5m-(6/5m)=0
Domain of the equation: 5m!=0
m!=0/5
m!=0
m∈R
Domain of the equation: 5m)!=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
7(2m-1)-3/5m-(+6/5m)=0
We multiply parentheses
14m-3/5m-(+6/5m)-7=0
We get rid of parentheses
14m-3/5m-6/5m-7=0
We multiply all the terms by the denominator
14m*5m-7*5m-3-6=0
We add all the numbers together, and all the variables
14m*5m-7*5m-9=0
Wy multiply elements
70m^2-35m-9=0
a = 70; b = -35; c = -9;
Δ = b2-4ac
Δ = -352-4·70·(-9)
Δ = 3745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{3745}}{2*70}=\frac{35-\sqrt{3745}}{140} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{3745}}{2*70}=\frac{35+\sqrt{3745}}{140} $

See similar equations:

| 7(a-3)=3a+15 | | 3b=4 | | (x-5)^2+3(x-5)+9=0 | | 5x+1+3x-4=7x=27 | | 56=4g-4 | | 33=5(x+6)-8x | | 3x-4+5x+1=7x-27 | | 2(v-2)-7=-29 | | 4u+8=64 | | 5(y+5)-8y=34 | | 5(x+3=2x+36 | | -9=+v/3 | | 3y-15=16 | | (x+4)(X-2)=2x | | 40+3x=20 | | 4=4+2u-u | | 2x²-6x+15=0 | | 4x-9=2x-1= | | -4x-1+6x+7=9-2x+5x-8 | | 6n=21×4 | | (2,3)y+(1,2)=(5,8)y+(37,24) | | x/3+3=24 | | .06n=1.5 | | 1+5x-40=-5x-9+4x | | -13=5y-8 | | -4-1+6x+7=9-2x+5x-8 | | 2=5(x-8)+2x | | 8+10x-3^2=0 | | 6x+4°+4x+6°=90 | | 9x-26+2x-12=4x+43 | | 9v-6=3v-6 | | 2y+2(-1)=-14 |

Equations solver categories