If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+72y+192=0
a = 6; b = 72; c = +192;
Δ = b2-4ac
Δ = 722-4·6·192
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-24}{2*6}=\frac{-96}{12} =-8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+24}{2*6}=\frac{-48}{12} =-4 $
| 3p=p+26 | | 5b=55/8 | | 5/8n=95 | | 2s=s+89 | | 5/12x-4=-7 | | 38=-4g+54 | | X^2-7x21=0 | | 6x-30-4x+8=-1 | | (5x-2)/4=3 | | 4x+4x+4x=32 | | 2(x+1.9)=6.2 | | 18=d+16 | | 1990+x=180 | | 480=25x | | x=179+x | | X^2-9x-38=0 | | -33.70+1.50p=-26.20 | | 2(x+7.6)=1.4 | | 90=(13x)+(10x+21) | | 3/4-4=-7+1/3x | | 3.95=d/1179 | | 2x+9/5x=x | | -33.50+1.50p=-26.20 | | 6=1+4n-5n | | 51/2x=-3 | | 57=5a+47 | | 1z^2-6z-16=0 | | -33.70+1.50p=-3.70 | | 7c-60=2c | | 63=2a+53 | | 32x+13=32x | | 65=a+18 |