If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+22=34
We move all terms to the left:
6y^2+22-(34)=0
We add all the numbers together, and all the variables
6y^2-12=0
a = 6; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·6·(-12)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*6}=\frac{0-12\sqrt{2}}{12} =-\frac{12\sqrt{2}}{12} =-\sqrt{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*6}=\frac{0+12\sqrt{2}}{12} =\frac{12\sqrt{2}}{12} =\sqrt{2} $
| 9a+7=27-a | | 6x^2-72+162=0 | | 5x+57=6x+72 | | 4a-5=9-3a | | 4+3a=11 | | |4-3a|=11 | | -115x=-46-1x | | -114=-46-1x | | 4.2n+5(2n–3)= | | 3a+7=2a+11 | | 39+52=c | | |4x-2|+4=6 | | a-1,600=81 | | 2,4+8+x=105.6 | | X-2y+16=0 | | 15a=11 | | 2x+3(+-3)=23 | | a+40=81 | | 40+41=b | | 7a-9=5 | | b+60=75 | | 5x+3x+x=50 | | 62+b=77 | | s+33=2s+23 | | 13+c=25 | | x^2+55x-750=0 | | (6x)+(3x+39)=180 | | 10+5y=1+8y | | 3/4x−4=−7+1/3x | | (3x+20)+(2x+40)=180 | | x²-55x-750=0 | | x²-55x=750 |