If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=30
We move all terms to the left:
6x^2-(30)=0
a = 6; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·6·(-30)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*6}=\frac{0-12\sqrt{5}}{12} =-\frac{12\sqrt{5}}{12} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*6}=\frac{0+12\sqrt{5}}{12} =\frac{12\sqrt{5}}{12} =\sqrt{5} $
| 12x+8=2x+78 | | 100x+1000=960+180x | | 2(5x+9)=8(x+2) | | -2+4x=100 | | 2w–4=6 | | 6x2+12x+35.75=0 | | 30x+6=2 | | -3(x-4)=-2(3x+1 | | 6(2−r)=36 | | 30x+2=6 | | (x+5)+15=100 | | -8e+25=9 | | 6(3-b)=4- | | (u+1)(3)= | | 116+31+4z+1=180 | | (x+5)+(4x-15)=90 | | 10x+44=16x-23 | | 84=14n*6 | | 1/2x+5=5/5x+1 | | 8x-3x=4+26 | | -3*15=42n | | 5/6+x=8/10 | | 6r−3r=3r | | 15=14n | | 36=4(20+c) | | ~15+x=3(3+x) | | 0.15x=4 | | 22.04-18.48+z=35.77 | | -2/5(x)=-10 | | 13+14-n=19 | | 4x+5=x^2+27 | | 7x-12=44* |