If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-72=0
a = 6; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·6·(-72)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*6}=\frac{0-24\sqrt{3}}{12} =-\frac{24\sqrt{3}}{12} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*6}=\frac{0+24\sqrt{3}}{12} =\frac{24\sqrt{3}}{12} =2\sqrt{3} $
| 3+5(a+4=) | | (5x-20)+(4x+10)=180 | | 14x+42=266 | | 4x-24=7x+21 | | 13y-10y-8=39.13 | | -107=10x-7 | | -4=-22-7x | | 16/14=n/35 | | 1x+3=-5-1x | | 17x+173=360 | | X^2+114=20x | | 1=a-51 | | 7/8n=-28 | | 10x+4=234 | | 27x-3=-70 | | 7/8n=-38 | | 210=8y | | (3x+2)+103=180 | | 14x+18=46 | | -3=-15-2(c-1)-32c | | 14x+18=49 | | -8y+20=-4(y-9) | | -6b=-84 | | 8w-12=-4w= | | 12+y=29+7y | | 5x=30/50 | | 10−2g=4 | | 7x+3(6x+7)=246 | | 1/5a+8=9a= | | 5(x^2-4x-21)=0 | | -37=6x-7 | | 13r+8=32 |