If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-3x-5=0
a = 6; b = -3; c = -5;
Δ = b2-4ac
Δ = -32-4·6·(-5)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{129}}{2*6}=\frac{3-\sqrt{129}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{129}}{2*6}=\frac{3+\sqrt{129}}{12} $
| 2x=24÷3 | | 3×2x=24 | | 5x+20=500 | | 15*(12-15x)=125*(4-x) | | (x-1/2)^2=23.25 | | (8-2a)(6-2a)=(a) | | 3x²+5=0 | | 4w+2=2w–4 | | 3x=2x20 | | 4-(3x+2=44 | | 7(5x-3)-10=2(3x-51-3(5-7x) | | 15*(12+15x)=125*(4-x) | | 9x^=-6x+1 | | 8x+27=5 | | 7x+5=69-x | | 5^2x=200 | | 4(2n+3)=28 | | 8a^2+12a+3=0 | | 3x-6=45/x | | 3/4(x-2)=2 | | 3x(x-2}=-7x+1 | | -5p+7=42 | | Y=||x-2|-4| | | F(x)=3x^2+2x-2 | | ﹣x﹣126=171﹣12x | | 2-x+12=4 | | x=250x-4x^2 | | 2x(4-1)=6 | | 15*(12-15x)=125 | | 3(f−2)=3 | | n-3n+10=0 | | 15*(12+15x)=125 |