If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-24=36
We move all terms to the left:
6x^2-24-(36)=0
We add all the numbers together, and all the variables
6x^2-60=0
a = 6; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·6·(-60)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*6}=\frac{0-12\sqrt{10}}{12} =-\frac{12\sqrt{10}}{12} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*6}=\frac{0+12\sqrt{10}}{12} =\frac{12\sqrt{10}}{12} =\sqrt{10} $
| E(14x-9=-7 | | 10x-3=3x-4 | | -62=-4b-2 | | 3k+3=51 | | -3k+3=51 | | C=0.5n25+5 | | C=25n+5 | | m^2+18=0 | | 2.054=1.09^n | | 10x-14=4x+16 | | 5d+16d=189 | | 5d+16d=1895d+16d=189 | | |25+x|=62 | | 4+–3c=–8 | | 10x=-5x^2+18x+1 | | 10=-5x^2+18x+1 | | 20x-18+14x=180 | | 5y+19=2y-21 | | 5y+19=2y-31 | | 4y-15=2y+93 | | 6k+0.7-1=0 | | 5(2m-6)=40 | | 3x/7÷2x/5=4/35 | | 5(2m-2)=12 | | 5(2m-2)=12 | | 2y+72=12 | | (3x)/7-(2x)/5=4/35 | | -n2+12n-11=0 | | -n2+12n-11=0 | | 8^{x+2}=99.6 | | 2x/7=x-6 | | 3x^2-1=1÷5(1-x) |