If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-12x-90=0
a = 6; b = -12; c = -90;
Δ = b2-4ac
Δ = -122-4·6·(-90)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-48}{2*6}=\frac{-36}{12} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+48}{2*6}=\frac{60}{12} =5 $
| 5+2(3-2x)=3x+4 | | 6x2+17x+5=0 | | 2c-2c+c=8 | | 6j-(5j-9)=4 | | 9=2w-5 | | 9m+3m-8m-3m=13 | | x2+18x+65=9 | | -21x-5-5=-40 | | 48=-12z | | -1x-3=4x+3 | | x+29+x+19+84=180 | | 0x+5=4x+1 | | 82728272872x=2 | | x2+8x-70=-5 | | 5/3s=15/3+3/2-1/4 | | 1-6x-2x=-7 | | 3x-13=7(x+2)-(x-7) | | x2+8x+2=-10 | | 6n+7n=9 | | 5(14)+24=(4x+6)=180 | | x+37+2x+17+90=180 | | 1x+3=7x+8 | | x2-6x-49=6 | | 6x+10=4x-6+2x | | -x-3=4x+3 | | 0x+4=6x+8 | | -9u+35=-2(u+7) | | 6u+5u+u-6u=18 | | 35=8x-3 | | 18x^2-24x+32-162=0 | | 7g+2g-2g+3g-2g=16 | | 5(w-3)-8w=-33 |