If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+x-10=0
a = 6; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·6·(-10)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{241}}{2*6}=\frac{-1-\sqrt{241}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{241}}{2*6}=\frac{-1+\sqrt{241}}{12} $
| (8+4)/(5a-3a)=-2 | | 0.2(x+0.5)=-0.5 | | .5(x+1.2)=-1.4 | | 9x2+3x-6=0 | | x(x-2)=3x-6 | | 1/8x-1/8x=2 | | 6.3x=48 | | 12/6=a | | 5x+14=-31-4 | | x^2-31x+288=0 | | x/1/2x-10=200 | | 7x-4=x+15 | | 3x+30=12x-15 | | 15-4x-7=8 | | 15-|4x-7|=8 | | 2/x-5=4x+2 | | (12/2a)=-2 | | 12/2a=(-2) | | |n+7|-2=5 | | 50+2t-0.0625t^2=0 | | 10=x/0.25 | | 9x+5=-4x-1 | | 3q^2-4q-20=0 | | 5(w-1)=-5w-45 | | 3×(4-x)=15 | | 6h-7=2h | | 12/2a=-2 | | -4.2x-6.5=-14.06+2x | | 28x=14 | | 2-2t=-8 | | 8t+9=105 | | 8t=9=105 |