If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x-40=0
a = 6; b = 8; c = -40;
Δ = b2-4ac
Δ = 82-4·6·(-40)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-32}{2*6}=\frac{-40}{12} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+32}{2*6}=\frac{24}{12} =2 $
| -3x^2-2x+30=0 | | 133x=73 | | -35-x=103 | | 3^7*3x=9 | | 3/4x+5/6x-(x-4)=2/3x | | -4-7x/5-(2.72)=0 | | -1/2-x=3x/4-2 | | 4-(x-2)=8x | | 3x+12=25+x | | 5(3x+2)=2x | | 3x+15=x+4x-5 | | 9x–5=3x+31 | | 45=1.50x | | x45=1.50 | | 45=x1.50 | | 5x+6(2x3)=24 | | 6x+8x=20+8 | | 2x-3x+4+7x=28 | | 6x-20=105 | | 45x=1.50 | | C=-6c14 | | 45=x30 | | 7x-20=16+5x | | -5x+34=89 | | 7b-7=2b+23 | | p²-11p-24=0 | | 3x-8-x-4=36 | | 5(x+1)-2(x-4)=28 | | 2(2x-11)=20 | | -4-7x/5=2.72 | | (3x-5)+(55)+(x+10)=180 | | 6x-15=3x+2x+12 |