If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+8x+1=0
a = 6; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·6·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*6}=\frac{-8-2\sqrt{10}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*6}=\frac{-8+2\sqrt{10}}{12} $
| 6x+35=x-25 | | 2x-6=0, | | 3x=(1/9)4-x | | 5t-7=4+-9 | | 2x=1725 | | -6x+0=-42 | | 144=2(8+8n) | | -1x-8=-2 | | 8x-8=-72, | | y=0.15+3.48 | | 4x+6(18)=-6 | | 6n+10=124 | | 1/3x-3/4=5/6x+3 | | 4+3(5x-12)=2x-6 | | -7x-6=-55, | | 4x+-6(18)=-6 | | 10p-6=184 | | 5x+34∘=2x+76∘ | | 5x+34∘=2x+76∘= | | 10p-6=124 | | 3x+6=9-x= | | 7n-2+3n+4= | | X2+7x-10=3 | | 4(t+5)-3=6-13 | | 32x=48 | | 40^3x=12 | | x-6x-12=0 | | Y/6-3=5+5/6*y | | x-2+2=6+2 | | 17p=184 | | 4(10)^3x=12 | | 2(x–5)=9–3x+6+8+3x+7. |