If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+43x+7=0
a = 6; b = 43; c = +7;
Δ = b2-4ac
Δ = 432-4·6·7
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-41}{2*6}=\frac{-84}{12} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+41}{2*6}=\frac{-2}{12} =-1/6 $
| 105+11+x=180 | | 15+8n=6-n | | 6(5–8v)+12=-54 | | 4m-5(3m-(10)=0 | | 4/5=25/x | | 6(z+3)-9=27. | | -2x2+3x-100=0 | | -4n-8(n+6)=-96 | | -6a=12-8a | | k6=-14 | | 78=-3(x-11) | | -5v=3v-6v | | x+50+97=180 | | 9x-30+1=12x-20 | | -5(h-3)-2h=46-4(h+1) | | -2x+4x=-22 | | (3x+1)=(x+27) | | -3(2x+1)=2(-3x+4) | | 42=8p+13 | | 4(2x=1)-3(1-4x)=-9 | | 14y=81+5y | | 74-t=-84 | | 6x+17=24+6x | | -4(2–5x)=9x+14 | | 9d=2d+6d+2=2d | | 6x-6x+6=x-5+6 | | 5x-2=2x17 | | 4(k+5)=40 | | 6x-15=4x+7 | | -4(7x+3=-68 | | 4x–12=15x+8 | | 25/x=3.5 |