If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+35x=19
We move all terms to the left:
6x^2+35x-(19)=0
a = 6; b = 35; c = -19;
Δ = b2-4ac
Δ = 352-4·6·(-19)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-41}{2*6}=\frac{-76}{12} =-6+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+41}{2*6}=\frac{6}{12} =1/2 $
| -4=-6-2g | | k/8+21=97 | | 3(4/3+2y)=3(4y-1/3) | | -5=-m/3-3 | | y/8+11=13 | | 10v=12+8v | | 16-8.80=8•x | | (x/2)+5x=(1/3) | | 0=-x/3+3 | | s+7/2s+20=47 | | 4/a=12/15 | | 7x^2-3x=37 | | (3x-1)^2=76 | | 11w=49+4w | | -19+11x=13x+17 | | 5a-6=36 | | 0=-5+m/5 | | 44x=100 | | -3=-8+r/4 | | -4K+2(5k-6)=-3k-39-2 | | -44+17x=82+15x | | 24x+16x=464 | | -6(9x+5)-3x+4x=408-x | | -15=-10-g | | -76+5x=13x+76 | | 23x-5=100 | | 12=2a+10 | | 4=3h+10 | | 5=12y | | 5=5+2a | | m=2m-6=-12=2m | | 5x-5x-34=-204 |