If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+35x-49=0
a = 6; b = 35; c = -49;
Δ = b2-4ac
Δ = 352-4·6·(-49)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-49}{2*6}=\frac{-84}{12} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+49}{2*6}=\frac{14}{12} =1+1/6 $
| x+5+8=9 | | -4(r+9)=-50 | | 2(x-7)^2=16 | | x+13.32=3/5 | | (5k-2)/3k=7 | | 2^x+2^(x+1)+2^(x+2)+2^(x+3)=30 | | 8y=2y+42 | | 4x2+24x+27=0 | | 3x-4=3x-5= | | .99+.89=10m | | -5y–10=-60 | | x2-15x+19=-5x-2 | | 5k/2-2/3k=7 | | 4(5x+2)=72 | | (1/2n)-(3/2n)=3/5 | | 2(7+4x)+3(3x-1)=11 | | -5y—10=-60 | | 20=7x+4-3x | | 4+6x=-2-68 | | 3/5=(1/2n)-(3/2n) | | 5k-2/3k=7 | | 3/5(2m-10)=2/m+10 | | x2-14x=-8x-5 | | .99=10+.89m | | x2-x-10=2 | | 3/5=1/2n-3/2n | | -32=-5k=13k | | 32-2y=126/y | | 2+3x=-43 | | 8(4-4n)+2=98 | | 5/15=9n/9 | | 10x5+1x1= |