If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+35x+50=0
a = 6; b = 35; c = +50;
Δ = b2-4ac
Δ = 352-4·6·50
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5}{2*6}=\frac{-40}{12} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5}{2*6}=\frac{-30}{12} =-2+1/2 $
| -8p=-56−8 | | .5x+.5=2.5x-1.5 | | -2y-7=-5y+5 | | (20-4a)/4=6-a | | 4n+5=6n+7= | | 6/48=1/x | | -75=-7x-3(x+5) | | -2y-7=5y+5 | | -96=-10x+34 | | 7-6h=-7h | | 8{x+7}=-96 | | 10f+6-8f=4f-8 | | 20y=6y+28 | | 5x+7(-2-12)=-201 | | 5x+7(-2-12)=-102 | | 7m=9+6m | | 5n–4=8+2n | | (-1/3)b=9 | | 22=4x-22 | | (2x)^2+(4x+20)^2=(6x)^2 | | 4-4r=-6r-10 | | 9u-65=2u-2 | | 10(7x-19)=160 | | 11.5=x/4 | | 10-3d=-4d | | 5x+14-4x=23+x-6 | | -6x=354 | | -4-8p=6-9p | | n^2+18n+96=-3 | | -11x+65=-8x-40 | | (13p+98)+(4p+48)=180 | | -7y=-4y+9 |