If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+35x+11=0
a = 6; b = 35; c = +11;
Δ = b2-4ac
Δ = 352-4·6·11
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-31}{2*6}=\frac{-66}{12} =-5+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+31}{2*6}=\frac{-4}{12} =-1/3 $
| -4=r-3/4 | | 13y=49+7y | | 5x=-94 | | 2x=-45 | | N+5=n+7 | | -9+x=83 | | -11=x/14 | | -4x=53 | | 3(x-3)+11=x-30 | | 3.5x+0.75x=25.5 | | 10x=-48 | | -1x=-41 | | F(x)=x^2/2+6x+21 | | 306=-18r | | -1x-4=-18 | | 7x+4=6x+2 | | 8v+2=-126 | | 20-9.79=c | | (2x-26)+(x-3)+44=180 | | 6/5x=-72 | | (3.x)+(3.8)=42 | | 786-31=5y+35 | | s+9=12 | | 3x+5(4/3x+2)=68 | | 8(17)-31=5y+35 | | -5=-2(v+9)+-7 | | 3x-9+x+x-11=180 | | 2z+(z-11)+(z-1)=180 | | 3z+5=25 | | 0=-16t^+34t | | 2w+(w-1)+49=180 | | 7x−5=7x |