If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+2x-10=0
a = 6; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·6·(-10)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{61}}{2*6}=\frac{-2-2\sqrt{61}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{61}}{2*6}=\frac{-2+2\sqrt{61}}{12} $
| 6(0.3s+0.48)=–5.4s | | x÷4-2=-3 | | (6x+8)=(7x+7) | | 5.7b−5.97=4.39+4.6b+8.5b | | (x-5)(x+5)=x²-25 | | 452=2(a)(0.92) | | b/48=8/12 | | –3(3.03+0.1c)=–(–4.2c+2.34) | | (2×+3y=4×+5y+6 | | (2+4x)+4=22 | | (2-4x)+4=22 | | (x+2)=16 | | 1.91(t−7)−–0.43=2.34 | | -48x/3x=8x | | 5+x+4+2x-6=21 | | (x-9)+9=31 | | (x+9)+9=31 | | (3+5x)+6=19 | | 10.1.5(0.5p+2)-1=p+2.5-0.5p | | (3-5x)+6=19 | | (x-7)+6=23 | | (x+7)+6=23 | | -(w+1/6-4)=12 | | 3x-29=2x+7 | | x+0.9x=167200 | | 15+8x=49 | | 4(5i-3)=2 | | 3y+9/5=45/2 | | q/2-6=10 | | 0=10(-5.2)(t) | | 1/2m²-2m=4 | | −160=−75d. |