If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+21x=0
a = 6; b = 21; c = 0;
Δ = b2-4ac
Δ = 212-4·6·0
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-21}{2*6}=\frac{-42}{12} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+21}{2*6}=\frac{0}{12} =0 $
| (4x+4)(x+8)=0 | | 2x+8+5x-2=48 | | 3(x+1)+5=5 | | 1/2(8x-10)+x+8=x+3(9-2x)-(x+2) | | -5x-3x+11=-5 | | X+4y=545 | | 2.7-w=1.3+w | | 4^x=2^x+9 | | 8x^2-8x-105=0 | | 4/15=6k | | 12+3x=8x | | x=1089 | | 4/5=3/6k | | 4x^2-28x+3=0 | | 29-6x=4x | | 8(x+16)-15=49 | | 5(x-14)-7=-57 | | 7(x+5)+7=-14 | | 8(x+11)-19=53 | | 9x+1+28x-2=33 | | 8(x+10)+20=84 | | 6(x+4)+16=-14 | | 4x-25=21 | | 3(x+11)+18=39 | | 3+x=131 | | 5(x+11)=5 | | 8(x+16)+10=162 | | 3(x-13)-15=-33 | | 7(x+13)=28 | | 7(x+17)=84 | | 2(x+5)+7=13 | | 9x^2-81=9 |