If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+21=33
We move all terms to the left:
6x^2+21-(33)=0
We add all the numbers together, and all the variables
6x^2-12=0
a = 6; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·6·(-12)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*6}=\frac{0-12\sqrt{2}}{12} =-\frac{12\sqrt{2}}{12} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*6}=\frac{0+12\sqrt{2}}{12} =\frac{12\sqrt{2}}{12} =\sqrt{2} $
| 4x-22=49 | | 115+x+x=120 | | 7/10p-8=1/5p-6 | | 5x+3=2+x | | 24x^2+72x-54=0 | | 2y^2-15y+8=(y-6)^2 | | 67+1x=90 | | 28-2a=28-2a | | -5.1=r/18.9 | | 50+x+x=120 | | -2r=-25 | | 2(3X-4)=4-6x | | 5y+7+48+90=180 | | 40+113+1x=180 | | h-2.2/4=2.8 | | 470+x=47 | | x+6.5=20 | | 10-3(x+6)=32 | | -7(3x+8)=175 | | 25(z+7)=13 | | 9x+3=5+12x | | 6u-3=5u+2 | | 1/2x+3=3x-12 | | 42+113+1x=180 | | 70+84+x=120 | | 49+69+1x=180 | | .4w–w–26=19 | | (4z/10)+6=-3 | | 5y=20−10 | | 110+2x+8x=180 | | 1/4+-7/10x=-133/4 | | 1=4+3u |