If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+19x+8=0
a = 6; b = 19; c = +8;
Δ = b2-4ac
Δ = 192-4·6·8
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-13}{2*6}=\frac{-32}{12} =-2+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+13}{2*6}=\frac{-6}{12} =-1/2 $
| x^2=√36/100 | | 4x-3+4x+13=90 | | 114=6x+18 | | 6x-x=2x^2=x^2 | | -2(x+9)=3x+2 | | 7m+5=2(2m+15)-4 | | -3(4x+9)=-65 | | 3x+2-13(3x)=2+2x | | 5e-8+2e-1=180 | | 10b+b+b-10b+2b=20 | | 4x+2.5=6.5x+2 | | 3r+r+3r=14 | | 5(x+5)+5=35 | | 6+3/4z=-18 | | x+4=−4 | | 19.49=47m-5.8-1.5 | | 2(4x-2)=8x-7) | | 2.3(3)+y=12.5 | | x=20+60 | | 10-3.2n=1.5 | | -6-8r=-8r-6 | | 59+8x-5=180 | | (2+3x)+85=180 | | 42-4.5x=2.5x-7 | | 5u-12u-2u=18 | | 2x+16=4x+16 | | 9x+4+85=180 | | -16=x−6 | | 170=10(6+k) | | 4t(t-3)+8=4(2t-4) | | -(9-5x)=8-4+2x | | 12(x+2)^2-48=0 |