If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+12x+4=0
a = 6; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·6·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*6}=\frac{-12-4\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*6}=\frac{-12+4\sqrt{3}}{12} $
| 3(x-13)+5(1-x)=4 | | (5x+4)=(7x-8) | | 130+x+55=180 | | 1/3+1/8+1/4=x | | -7x+5(x+8)=26 | | v2+7v+3=0 | | 2x7=711 | | 1/2(6-6x)+x=15+4x | | 9x+9+9x+9=180 | | 7x-7(x-7)-5x=24 | | 8x-1+133=180 | | (3x+7)=(8x-8) | | 9x+5+26x=180 | | 3x-180=6 | | 6x+12+15x=180 | | (9y+4)+(2y+4)=74 | | -3(x-7)-x=25 | | 4x+2=4x-12(x-1) | | y=-115y | | 2x+9=155x+1 | | 211=158-x | | -5(b+3)+7b=-1 | | 31/5x=124/5 | | x+12+65=90 | | 4x-2(x-5)=2(x+1)+4 | | 4x+5+45=90 | | 1-5u=11 | | -2+8n-3=3 | | 131+x+23=180 | | 8b+2=3b+7 | | 2x+35=7x+5 | | 2(x-1)-2=4(x-1)-2x |