6x-8x+5=-2x(x+2)+7

Simple and best practice solution for 6x-8x+5=-2x(x+2)+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x-8x+5=-2x(x+2)+7 equation:



6x-8x+5=-2x(x+2)+7
We move all terms to the left:
6x-8x+5-(-2x(x+2)+7)=0
We add all the numbers together, and all the variables
-2x-(-2x(x+2)+7)+5=0
We calculate terms in parentheses: -(-2x(x+2)+7), so:
-2x(x+2)+7
We multiply parentheses
-2x^2-4x+7
Back to the equation:
-(-2x^2-4x+7)
We get rid of parentheses
2x^2+4x-2x-7+5=0
We add all the numbers together, and all the variables
2x^2+2x-2=0
a = 2; b = 2; c = -2;
Δ = b2-4ac
Δ = 22-4·2·(-2)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5}}{2*2}=\frac{-2-2\sqrt{5}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5}}{2*2}=\frac{-2+2\sqrt{5}}{4} $

See similar equations:

| 24=8(d–2) | | 4x+9=4x-12 | | 6(x-5)=24x= | | 46=4+7z | | 3x-10=-5x+6+6x | | 12n-4=-16 | | 17=(8.5-2x)+(7x-0.3)+(5x+1.1) | | 16+7s=79 | | 6x3x=26 | | 3=-2+u | | 3=5/3(3)+b | | 4(5m-10)-9m=6(m-4)+9m | | 8d+3=99 | | x/6=-36 | | 3(b+7)-13=-19 | | 9•5x=1 | | -2x+1+x=0 | | T=2s+19.41 | | -2a=1=19 | | 75x=8400 | | -3=-2/1(0)+b | | (4x+19)2+(3x+65)=180 | | (2x+35)+(9x-49)=90 | | -4(2-5n)-10=2(5-4n) | | 4/f=1/2 | | -3=-4/7(3)+b | | 4-4r=4(1+8r) | | 16=n+27 | | 4n^2+n-60=0 | | 4x-5+9=4x-9 | | C=39.86+0.25x | | 3(x+4)=6x/4 |

Equations solver categories