6x-2x(x-6)=4(x+1)+9

Simple and best practice solution for 6x-2x(x-6)=4(x+1)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x-2x(x-6)=4(x+1)+9 equation:



6x-2x(x-6)=4(x+1)+9
We move all terms to the left:
6x-2x(x-6)-(4(x+1)+9)=0
We multiply parentheses
-2x^2+6x+12x-(4(x+1)+9)=0
We calculate terms in parentheses: -(4(x+1)+9), so:
4(x+1)+9
We multiply parentheses
4x+4+9
We add all the numbers together, and all the variables
4x+13
Back to the equation:
-(4x+13)
We add all the numbers together, and all the variables
-2x^2+18x-(4x+13)=0
We get rid of parentheses
-2x^2+18x-4x-13=0
We add all the numbers together, and all the variables
-2x^2+14x-13=0
a = -2; b = 14; c = -13;
Δ = b2-4ac
Δ = 142-4·(-2)·(-13)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{23}}{2*-2}=\frac{-14-2\sqrt{23}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{23}}{2*-2}=\frac{-14+2\sqrt{23}}{-4} $

See similar equations:

| 6-3x=5x-10x=6 | | 16z-24=8(2z-3 | | (4n)+17=(5n+37) | | 9x=21x+8 | | 4+8m=7m+15 | | 3u-9=45 | | (3x-7)^2=50 | | 10x+5=3x-8 | | 4n+17=5n+37 | | 12x+18=-48+42 | | x-12x=$560 | | 20-11k=-4-14k | | ​(​11b+8)(3b-9)=0 | | 1=0.7x-20 | | 10w-6w=23-5 | | 4.1c-9.46=5.2c | | 61=8-1/3(12w+42)-w | | -2b=-7b+20 | | 9x-3=4x+16.25 | | 8.2x=31.16 | | -20d+20=-4d-20-20d | | 17x^2-8=0 | | x-6=3x+20 | | -9x-1/2(-6x+4)=-9-(6x-6) | | 7x-4=2x+5.25 | | 10+2(8x+6)=8-6(-3x-7) | | 5a-10=3a+2 | | 99=9(b+1) | | 10w+3w+5=2(w-3) | | 4(x-3)-(x-3)=0 | | -3g+7=-2g | | 10-6h=-5h |

Equations solver categories