If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x-24=(1/2)(5+2x+7)
We move all terms to the left:
6x-24-((1/2)(5+2x+7))=0
Domain of the equation: 2)(5+2x+7))!=0We add all the numbers together, and all the variables
x∈R
6x-((+1/2)(2x+12))-24=0
We multiply parentheses ..
-((+2x^2+1/2*12))+6x-24=0
We multiply all the terms by the denominator
-((+2x^2+1+6x*2*12))-24*2*12))=0
We calculate terms in parentheses: -((+2x^2+1+6x*2*12)), so:We add all the numbers together, and all the variables
(+2x^2+1+6x*2*12)
We get rid of parentheses
2x^2+6x*2*12+1
Wy multiply elements
2x^2+144x*1+1
Wy multiply elements
2x^2+144x+1
Back to the equation:
-(2x^2+144x+1)
-(2x^2+144x+1)=0
We get rid of parentheses
-2x^2-144x-1=0
a = -2; b = -144; c = -1;
Δ = b2-4ac
Δ = -1442-4·(-2)·(-1)
Δ = 20728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20728}=\sqrt{4*5182}=\sqrt{4}*\sqrt{5182}=2\sqrt{5182}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-2\sqrt{5182}}{2*-2}=\frac{144-2\sqrt{5182}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+2\sqrt{5182}}{2*-2}=\frac{144+2\sqrt{5182}}{-4} $
| 6y-89=107 | | 4z-50=178 | | 3x+25°=2x° | | 6x-102=96 | | x/5-x/7=1/35 | | 5x+5=-5x | | 6x-102=106 | | 6z-83=103 | | 3^x+1+3^x=3 | | 25=z+14 | | 23=3xX | | 27x+45=32x+30 | | x-(x*0.1)=50 | | x-(x×0.1)=50 | | 3/(2x-1)+4(2x+1)=7/2x | | x2+7x=4 | | 2x-3+x+1=16 | | w=(-7)=-20 | | 3x-1+x+4=31 | | x+15x+33=12x+65 | | 2x+50=6x+27 | | 16m-7=2m | | 28=h+9-(-11) | | 5+x4=5 | | -14=-3+x | | 7(5+d)=-14 | | 75-x-6x=19+4x-10 | | 75-x-6x=194+x-10 | | X-(7-3x)=3(2x+5) | | X+(x*24/100)=320 | | X2+5x=361 | | d+96=1 |