6x+9=2(x+4);x=1/4

Simple and best practice solution for 6x+9=2(x+4);x=1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x+9=2(x+4);x=1/4 equation:



6x+9=2(x+4)x=1/4
We move all terms to the left:
6x+9-(2(x+4)x)=0
We calculate terms in parentheses: -(2(x+4)x), so:
2(x+4)x
We multiply parentheses
2x^2+8x
Back to the equation:
-(2x^2+8x)
We get rid of parentheses
-2x^2+6x-8x+9=0
We add all the numbers together, and all the variables
-2x^2-2x+9=0
a = -2; b = -2; c = +9;
Δ = b2-4ac
Δ = -22-4·(-2)·9
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{19}}{2*-2}=\frac{2-2\sqrt{19}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{19}}{2*-2}=\frac{2+2\sqrt{19}}{-4} $

See similar equations:

| d+1/4=1 | | 50=5+3x | | 139=4x+11 | | 3.2=t+1 | | 5m+14=-1 | | -7x-(16x+7)=7+(8x+1) | | 8/10=12/p | | 7(x−2)=42 | | 3w^2+w-52=0 | | 5+28=-2x-28 | | 14m-10=3(4=m) | | 3y+17=5y | | 5x-2/4=-2/8+3x | | 4x-2(4-3x)=3(x-4)-24 | | 3w^2-w-52=0 | | 3/4r=8 | | 5x+28=-2-28 | | 99=c+20 | | 7+2(3x-1)=17 | | w/6+5/8=3/8 | | 3v-2=4v-4 | | 3y+y+17=5y-13 | | 25+9c+c-18=12c+16-2c-9 | | (180)8=-80x | | w^2-8w-10=10 | | 4(1−p)=−4p+4 | | 2x+9=3x-36 | | 1/2x+10=-2x+1,x | | 763=m-183 | | 36=13n4n | | 3/4•x+6=9 | | 10y-10y=-11 |

Equations solver categories