If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+4=(1/2)(4x+56)
We move all terms to the left:
6x+4-((1/2)(4x+56))=0
Domain of the equation: 2)(4x+56))!=0We add all the numbers together, and all the variables
x∈R
6x-((+1/2)(4x+56))+4=0
We multiply parentheses ..
-((+4x^2+1/2*56))+6x+4=0
We multiply all the terms by the denominator
-((+4x^2+1+6x*2*56))+4*2*56))=0
We calculate terms in parentheses: -((+4x^2+1+6x*2*56)), so:We add all the numbers together, and all the variables
(+4x^2+1+6x*2*56)
We get rid of parentheses
4x^2+6x*2*56+1
Wy multiply elements
4x^2+672x*5+1
Wy multiply elements
4x^2+3360x+1
Back to the equation:
-(4x^2+3360x+1)
-(4x^2+3360x+1)=0
We get rid of parentheses
-4x^2-3360x-1=0
a = -4; b = -3360; c = -1;
Δ = b2-4ac
Δ = -33602-4·(-4)·(-1)
Δ = 11289584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11289584}=\sqrt{13456*839}=\sqrt{13456}*\sqrt{839}=116\sqrt{839}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3360)-116\sqrt{839}}{2*-4}=\frac{3360-116\sqrt{839}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3360)+116\sqrt{839}}{2*-4}=\frac{3360+116\sqrt{839}}{-8} $
| 7+2x-10=3x-12 | | X-(x×.25)=60 | | 19.7=4n-5 | | u-8.5=7.87 | | 4y+4+90=180 | | 0=-x2+10x–8 | | 3y+y+4=180 | | -x/6+8=12 | | 6x+35=385 | | 6r/2r+1=-3 | | 9x–4x=25 | | 1x+2=6x+1 | | -81=-9(x+8) | | 5-3x-18=x-1-8x | | -3(v+4)=2v-27 | | 9(3+x)=6(2+-17 | | 7x+15=60 | | 5(7x+48)=8(4x+27) | | 3r+10=30 | | -90=-9(u-1) | | 1/3x-9=(2x-1)-13x | | 9x+12-5=-3+4 | | -3u-5u=-56 | | 9x+12=7x-2 | | -s–63=-2 | | 9x+12-5=9+7 | | -3u–5u=-56 | | 1/3-9=(2x-1)-13x | | 9x+12-5=-3+-5 | | 1.88f=71 | | 2=a–9 | | 9x+12-5=9+-2 |