6x+27/9x+x-6/3+3=15

Simple and best practice solution for 6x+27/9x+x-6/3+3=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x+27/9x+x-6/3+3=15 equation:



6x+27/9x+x-6/3+3=15
We move all terms to the left:
6x+27/9x+x-6/3+3-(15)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
determiningTheFunctionDomain 6x+27/9x+x+3-15-6/3=0
We add all the numbers together, and all the variables
7x+27/9x-14=0
We multiply all the terms by the denominator
7x*9x-14*9x+27=0
Wy multiply elements
63x^2-126x+27=0
a = 63; b = -126; c = +27;
Δ = b2-4ac
Δ = -1262-4·63·27
Δ = 9072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9072}=\sqrt{1296*7}=\sqrt{1296}*\sqrt{7}=36\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-126)-36\sqrt{7}}{2*63}=\frac{126-36\sqrt{7}}{126} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-126)+36\sqrt{7}}{2*63}=\frac{126+36\sqrt{7}}{126} $

See similar equations:

| 121/6x-11=43/4x+35/6 | | 7k+k+k=6 | | a+2a+39=180 | | 6y+2y-2y+y-4=3 | | 13j-13j+2j=16 | | V-39=v-49 | | -10w+8w-11w+9w-8w=12 | | 7x+4=-2x-8 | | 121/6-11=43/4x+35/6 | | 15b+-11b+-18b+b=13 | | 16z-9z-2z+3=18 | | 4a-1+1=10+1 | | 4(5x-8)=108 | | –5q=–7−4q | | 16q/3=3 | | 29=3x-4 | | -12x+8x+10x+-6x+x+-6=0 | | 20c-10c+3c-11c+2c=16 | | 8x=6x-20/x | | 2(5-x)+(-x+1)=-2x-2 | | x+3*10-20=510 | | 2.25x+14.25=45.75 | | 47+(2x-3)=180 | | m/2=64 | | 9y-15y=-94+28 | | 7u+5u-8u+u-2=18 | | (6x+10)=-14 | | 12x+200=272 | | 3x+2=722 | | 9•r=117 | | 4w+w+5w=20 | | 13g+-11g=-10 |

Equations solver categories