If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x+19=(2-x)(2-x)
We move all terms to the left:
6x+19-((2-x)(2-x))=0
We add all the numbers together, and all the variables
6x-((-1x+2)(-1x+2))+19=0
We multiply parentheses ..
-((+x^2-2x-2x+4))+6x+19=0
We calculate terms in parentheses: -((+x^2-2x-2x+4)), so:We add all the numbers together, and all the variables
(+x^2-2x-2x+4)
We get rid of parentheses
x^2-2x-2x+4
We add all the numbers together, and all the variables
x^2-4x+4
Back to the equation:
-(x^2-4x+4)
6x-(x^2-4x+4)+19=0
We get rid of parentheses
-x^2+6x+4x-4+19=0
We add all the numbers together, and all the variables
-1x^2+10x+15=0
a = -1; b = 10; c = +15;
Δ = b2-4ac
Δ = 102-4·(-1)·15
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{10}}{2*-1}=\frac{-10-4\sqrt{10}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{10}}{2*-1}=\frac{-10+4\sqrt{10}}{-2} $
| n=-2 | | 18-5x=12x | | 26x+64=26x+69 | | (2x+8)+(3x+16)+(4x-18)+(3x-7)+(2x+25)=0 | | 3x=4x+19+90 | | 109+-4x=33 | | 3p+2=7p-4 | | 3x=4x+19+180 | | 13+2(5c-2)=5c+29 | | 7n+7=-6n+9 | | −10=−12v+14v | | 4x+7-2x=9 | | 43000+3400x=52000+1600x | | 13-8p=41 | | 70=h+17 | | 16-x=4-3x | | 5-6r=-7r | | q-45=-32 | | -2y+3=1/4y+7 | | 8+0.16x=11+0.12x | | -8-k=-2k | | 42-12x=18-12x | | 3(5x+2)-8=10 | | -88-x=-9x+64 | | 6-8t=-9t | | 18x•3=30 | | 119-y=207 | | 16x-7=4(4x+5) | | 7+3x=2x-1 | | 8g+10=32+3g | | 2(4x+4)+38=11x+4-3x+42 | | 5x+18+10x-3=180 |