6x+(2/3x)=180

Simple and best practice solution for 6x+(2/3x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x+(2/3x)=180 equation:



6x+(2/3x)=180
We move all terms to the left:
6x+(2/3x)-(180)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
6x+(+2/3x)-180=0
We get rid of parentheses
6x+2/3x-180=0
We multiply all the terms by the denominator
6x*3x-180*3x+2=0
Wy multiply elements
18x^2-540x+2=0
a = 18; b = -540; c = +2;
Δ = b2-4ac
Δ = -5402-4·18·2
Δ = 291456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291456}=\sqrt{576*506}=\sqrt{576}*\sqrt{506}=24\sqrt{506}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-24\sqrt{506}}{2*18}=\frac{540-24\sqrt{506}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+24\sqrt{506}}{2*18}=\frac{540+24\sqrt{506}}{36} $

See similar equations:

| 4*(x-6)=80 | | x+19/19=2 | | 4*x-6=80 | | 3*(3/4x)=1/4 | | 3(4-3)(1-x)+2)=7-x | | 14=8m+8 | | 15x+5.3=8.3 | | 2x-10+4x+40=180 | | 1=q–13 | | 149+x=90 | | c+4c=-55 | | 1.5x5.3=8.3 | | 36=-3c+6c | | (68-x=90-2x) | | -4=2(1/2x-1) | | 12y+y^2=180 | | 4+x-6+4+x-6=60 | | (5-u)(3u-2)=0 | | 6(3x-1)=7+4x | | 1-(2x+3)=x-4 | | 2y^2-16y+50=0 | | 9(a–8)=-54 | | 5z-5/7z=3 | | 20=8x=4 | | 3x^2+13=12x | | 5(2+u)=-35 | | (2x+11)+(3x-40)=180 | | 7=-3/5t+17 | | x-5=15. | | p2-2p+1=0 | | a2+3a-10=0 | | 45+1.50x=3.00x |

Equations solver categories