6x*x-4x-12=-2x

Simple and best practice solution for 6x*x-4x-12=-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x*x-4x-12=-2x equation:


Simplifying
6x * x + -4x + -12 = -2x

Multiply x * x
6x2 + -4x + -12 = -2x

Reorder the terms:
-12 + -4x + 6x2 = -2x

Solving
-12 + -4x + 6x2 = -2x

Solving for variable 'x'.

Reorder the terms:
-12 + -4x + 2x + 6x2 = -2x + 2x

Combine like terms: -4x + 2x = -2x
-12 + -2x + 6x2 = -2x + 2x

Combine like terms: -2x + 2x = 0
-12 + -2x + 6x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-6 + -1x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-6 + -1x + 3x2)' equal to zero and attempt to solve: Simplifying -6 + -1x + 3x2 = 0 Solving -6 + -1x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -2 + -0.3333333333x + x2 = 0 Move the constant term to the right: Add '2' to each side of the equation. -2 + -0.3333333333x + 2 + x2 = 0 + 2 Reorder the terms: -2 + 2 + -0.3333333333x + x2 = 0 + 2 Combine like terms: -2 + 2 = 0 0 + -0.3333333333x + x2 = 0 + 2 -0.3333333333x + x2 = 0 + 2 Combine like terms: 0 + 2 = 2 -0.3333333333x + x2 = 2 The x term is -0.3333333333x. Take half its coefficient (-0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. -0.3333333333x + 0.02777777779 + x2 = 2 + 0.02777777779 Reorder the terms: 0.02777777779 + -0.3333333333x + x2 = 2 + 0.02777777779 Combine like terms: 2 + 0.02777777779 = 2.02777777779 0.02777777779 + -0.3333333333x + x2 = 2.02777777779 Factor a perfect square on the left side: (x + -0.1666666667)(x + -0.1666666667) = 2.02777777779 Calculate the square root of the right side: 1.424000624 Break this problem into two subproblems by setting (x + -0.1666666667) equal to 1.424000624 and -1.424000624.

Subproblem 1

x + -0.1666666667 = 1.424000624 Simplifying x + -0.1666666667 = 1.424000624 Reorder the terms: -0.1666666667 + x = 1.424000624 Solving -0.1666666667 + x = 1.424000624 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.1666666667' to each side of the equation. -0.1666666667 + 0.1666666667 + x = 1.424000624 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + x = 1.424000624 + 0.1666666667 x = 1.424000624 + 0.1666666667 Combine like terms: 1.424000624 + 0.1666666667 = 1.5906672907 x = 1.5906672907 Simplifying x = 1.5906672907

Subproblem 2

x + -0.1666666667 = -1.424000624 Simplifying x + -0.1666666667 = -1.424000624 Reorder the terms: -0.1666666667 + x = -1.424000624 Solving -0.1666666667 + x = -1.424000624 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.1666666667' to each side of the equation. -0.1666666667 + 0.1666666667 + x = -1.424000624 + 0.1666666667 Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000 0.0000000000 + x = -1.424000624 + 0.1666666667 x = -1.424000624 + 0.1666666667 Combine like terms: -1.424000624 + 0.1666666667 = -1.2573339573 x = -1.2573339573 Simplifying x = -1.2573339573

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.5906672907, -1.2573339573}

Solution

x = {1.5906672907, -1.2573339573}

See similar equations:

| Ln(0.25)=ln(t)-0.1*t | | X^2+3x-56= | | 3x/3=90 | | (16p^10)1/2 | | 6*7=(y+9)*9 | | 8x+10x+9=90 | | -37+12=-48 | | 11z+12=9+4z | | 6/7×5/8 | | -1/3x-1/4=1 | | 1+20x=y | | -2(5y-2u-4)= | | 1+20x= | | 5x-5=-8 | | 5x-10+2x-20=180 | | 4v+2=5 | | -9a+9=-3 | | 2coty+y=0 | | -8b-5=-3b-9 | | 3(8x-4)=8(x+3)-4 | | -3v+5=-5v+8 | | 8y+7=-3y-8 | | -5x+6=-9x-2 | | -8+7x=-2+5x | | 6+3-2=7x+7 | | 11x=4+3x | | 10x+2x=2x-12 | | -9+7x=-1+3x | | 5(7x+2)=80 | | 9x^2(1/3x)^4 | | 6x-10+2x+20=90 | | 5(4x+2)=130 |

Equations solver categories