If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x(x-5)=23
We move all terms to the left:
6x(x-5)-(23)=0
We multiply parentheses
6x^2-30x-23=0
a = 6; b = -30; c = -23;
Δ = b2-4ac
Δ = -302-4·6·(-23)
Δ = 1452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1452}=\sqrt{484*3}=\sqrt{484}*\sqrt{3}=22\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-22\sqrt{3}}{2*6}=\frac{30-22\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+22\sqrt{3}}{2*6}=\frac{30+22\sqrt{3}}{12} $
| 3-3x/8+x=0 | | 2x+(x-2)=28 | | 4(k-8=-32+4k | | -x/7-2=-3 | | 12+(5x-2)=3x+20 | | 7-b/5=-3 | | 0+(x+20)=1605053 | | 3x+1=106 | | (2x+4)=74 | | (2x+4)=63 | | X+x+x/2+x/2=360 | | a/3-1=18 | | 2x-(-5)=6 | | 2^x=128,2^x+1 | | 25x2+121=0 | | 3-3x/8+x=5-5x/8 | | -20+15x-20=-x+5+12x | | z/4+9=-2 | | 3p^2-6p=-24 | | -20+15x-20=x+5+12x | | X+x/2=72 | | 7(-1-7n=91 | | g÷4+6=-2 | | 6(2+x)+5=89 | | 0=l(l+4)-48 | | -25+5r=-3(2r+1 | | 14-2xx=2 | | n2-2n16=38 | | 3-(-x)=-7 | | 5(2x-4)=4+6x | | -15+10x-5-2x=-15+5x+35-5x | | -15+10x-5+2x=-15+5x+35-5x |