6x(x+2)=2(x+4)

Simple and best practice solution for 6x(x+2)=2(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(x+2)=2(x+4) equation:



6x(x+2)=2(x+4)
We move all terms to the left:
6x(x+2)-(2(x+4))=0
We multiply parentheses
6x^2+12x-(2(x+4))=0
We calculate terms in parentheses: -(2(x+4)), so:
2(x+4)
We multiply parentheses
2x+8
Back to the equation:
-(2x+8)
We get rid of parentheses
6x^2+12x-2x-8=0
We add all the numbers together, and all the variables
6x^2+10x-8=0
a = 6; b = 10; c = -8;
Δ = b2-4ac
Δ = 102-4·6·(-8)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{73}}{2*6}=\frac{-10-2\sqrt{73}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{73}}{2*6}=\frac{-10+2\sqrt{73}}{12} $

See similar equations:

| 5x-9=x+4 | | -15x-165-4x=158 | | 5x-2=110 | | 10x=9+200 | | 5(x+10)=100 | | 20x+8=25x-2 | | 1x=23-6 | | 5x+200=125 | | 23x=25-2x | | 25x-2=14+18x | | 5x–125=200 | | 5x+125=200 | | 23x=14+18x | | 0=-4.9t^2+8t+1 | | 5(8m-1)-8m=23+4m | | -69=7r=9 | | 8x-45=16 | | –2x+7=5 | | 6x+4+7x+7=90 | | 8x+6=2x-6 | | 2x=11-3 | | 7x+4=3x | | x÷2=29 | | x.2=–1 | | x2=–1 | | 25x-6=118 | | x2=–1 | | 14.5x=20x+2 | | 1/(x+0.4x)=30 | | 1/(x+0.4x)=230 | | 5x-10=1.5x | | 2625=2x |

Equations solver categories