6x(x+2)+4=3x(x+1)

Simple and best practice solution for 6x(x+2)+4=3x(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(x+2)+4=3x(x+1) equation:


Simplifying
6x(x + 2) + 4 = 3x(x + 1)

Reorder the terms:
6x(2 + x) + 4 = 3x(x + 1)
(2 * 6x + x * 6x) + 4 = 3x(x + 1)
(12x + 6x2) + 4 = 3x(x + 1)

Reorder the terms:
4 + 12x + 6x2 = 3x(x + 1)

Reorder the terms:
4 + 12x + 6x2 = 3x(1 + x)
4 + 12x + 6x2 = (1 * 3x + x * 3x)
4 + 12x + 6x2 = (3x + 3x2)

Solving
4 + 12x + 6x2 = 3x + 3x2

Solving for variable 'x'.

Reorder the terms:
4 + 12x + -3x + 6x2 + -3x2 = 3x + 3x2 + -3x + -3x2

Combine like terms: 12x + -3x = 9x
4 + 9x + 6x2 + -3x2 = 3x + 3x2 + -3x + -3x2

Combine like terms: 6x2 + -3x2 = 3x2
4 + 9x + 3x2 = 3x + 3x2 + -3x + -3x2

Reorder the terms:
4 + 9x + 3x2 = 3x + -3x + 3x2 + -3x2

Combine like terms: 3x + -3x = 0
4 + 9x + 3x2 = 0 + 3x2 + -3x2
4 + 9x + 3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
4 + 9x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
1.333333333 + 3x + x2 = 0

Move the constant term to the right:

Add '-1.333333333' to each side of the equation.
1.333333333 + 3x + -1.333333333 + x2 = 0 + -1.333333333

Reorder the terms:
1.333333333 + -1.333333333 + 3x + x2 = 0 + -1.333333333

Combine like terms: 1.333333333 + -1.333333333 = 0.000000000
0.000000000 + 3x + x2 = 0 + -1.333333333
3x + x2 = 0 + -1.333333333

Combine like terms: 0 + -1.333333333 = -1.333333333
3x + x2 = -1.333333333

The x term is 3x.  Take half its coefficient (1.5).
Square it (2.25) and add it to both sides.

Add '2.25' to each side of the equation.
3x + 2.25 + x2 = -1.333333333 + 2.25

Reorder the terms:
2.25 + 3x + x2 = -1.333333333 + 2.25

Combine like terms: -1.333333333 + 2.25 = 0.916666667
2.25 + 3x + x2 = 0.916666667

Factor a perfect square on the left side:
(x + 1.5)(x + 1.5) = 0.916666667

Calculate the square root of the right side: 0.957427108

Break this problem into two subproblems by setting 
(x + 1.5) equal to 0.957427108 and -0.957427108.

Subproblem 1

x + 1.5 = 0.957427108 Simplifying x + 1.5 = 0.957427108 Reorder the terms: 1.5 + x = 0.957427108 Solving 1.5 + x = 0.957427108 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = 0.957427108 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = 0.957427108 + -1.5 x = 0.957427108 + -1.5 Combine like terms: 0.957427108 + -1.5 = -0.542572892 x = -0.542572892 Simplifying x = -0.542572892

Subproblem 2

x + 1.5 = -0.957427108 Simplifying x + 1.5 = -0.957427108 Reorder the terms: 1.5 + x = -0.957427108 Solving 1.5 + x = -0.957427108 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.5' to each side of the equation. 1.5 + -1.5 + x = -0.957427108 + -1.5 Combine like terms: 1.5 + -1.5 = 0.0 0.0 + x = -0.957427108 + -1.5 x = -0.957427108 + -1.5 Combine like terms: -0.957427108 + -1.5 = -2.457427108 x = -2.457427108 Simplifying x = -2.457427108

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.542572892, -2.457427108}

See similar equations:

| -2x-5(X+2)=11 | | 7x-19+4x+2=90 | | 2/9m-5/6=7/12 | | 3r-5=7r-25 | | 86r=4042 | | h=-.3t^2+5t+7 | | f(x)=7(x+8)+3 | | g(x)=3x+2 | | x=3(x-2)+.6 | | y/8.5=40 | | V=(3)(0.9) | | -1/5x=20 | | 5+7m=20+2m | | 1x-18=90 | | 1x-18=180 | | V=(68)(53)(64) | | 5n-6(n+2)=12 | | -6m-23=5m+14 | | 5x-22=90 | | 6(a+6)-4a=a-8 | | 7xsquare=175 | | h-138=370 | | 86=-41+x | | (-a^2b^2)/(a^-2b^8)/(a^4b^-2) | | -3y-2y=14 | | e(x)=6x+3 | | 6y-5=3x | | (1/2)(10t)=50000 | | 8+y=11/2 | | 6x^2-39x-21=0 | | 8+y=51/2 | | 4t^2-8t-9=0 |

Equations solver categories