If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x(3x+9)=90
We move all terms to the left:
6x(3x+9)-(90)=0
We multiply parentheses
18x^2+54x-90=0
a = 18; b = 54; c = -90;
Δ = b2-4ac
Δ = 542-4·18·(-90)
Δ = 9396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9396}=\sqrt{324*29}=\sqrt{324}*\sqrt{29}=18\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-18\sqrt{29}}{2*18}=\frac{-54-18\sqrt{29}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+18\sqrt{29}}{2*18}=\frac{-54+18\sqrt{29}}{36} $
| -12w-9+w=26 | | 3b+5=b-5 | | 3x=−3x+1 | | 3x+95+110=180 | | 3*2^x=96 | | 14x+5x+11x=180 | | 5x-15=4x+10 | | 9x+3^2x+1=4.3^2x | | 9x-7=2x-5 | | f+22/4=9 | | 3x-x+2(x+4)=23+3x | | 112+x+63=180 | | 20x²+6x-120=0 | | 5x+15=4x-10 | | 5x+10=-9x-16 | | 3x+90+110=180 | | 3y/2-y/3=5y-4/6 | | 2π+(9x-3π)-2x=7x-π | | 12-3u=9u+45 | | n^2-7=93 | | (8x)=100+(3x) | | y/2+1/3=-2/3 | | -5(x+1)+1)+3x=6-(4x-3) | | 3x+90+x=110 | | m3=m9 | | 7k-5=10k | | 3x+4x/2+5x/4=625 | | 1/3x-10=8 | | 9x+5÷8=4 | | 2/5b+1=-10 | | 1/2(x−110)=10+7x | | 13=t=91 |