If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+18w+12=0
a = 6; b = 18; c = +12;
Δ = b2-4ac
Δ = 182-4·6·12
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6}{2*6}=\frac{-24}{12} =-2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6}{2*6}=\frac{-12}{12} =-1 $
| X-0.30x=25.20 | | 40+6n=-4-(n+5) | | -3n-10=2n+10 | | 4x-(x+6)=4 | | 0.02(x-8)=140 | | t-18=-22 | | 2(4w1)=-10(w-3)+4 | | 4(p+1)+1=6p+6 | | 6x-3+3x=8x+7-10 | | 8x-5=5x-6 | | 1-5w=-9-4w | | 10p=9p-10 | | -20=2u+6(u+2) | | -13=2+4x+1 | | 6h-6=8h | | -10.4w-19.81=5.7w-10.7w+11.51 | | 3b+7=+2 | | 6m-7+8m=21 | | 4v+4(v-7)=28 | | 2480-4710/3+(200-(x-5))=1010 | | k^2-12k+7=-2 | | -31=-10+7m | | 7x-2(x-1)=12 | | 2(v+1)+7=3(v-2)-6 | | -9u+11+8u=-3u-15 | | -3(x-1)=8 | | 2v+2+10v+4=4v-4 | | 2g-19=17+11g | | (m/2)=(m+1/4) | | 4(x+1=24 | | 4+4j=5j | | 18/n=6/3 |