If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+13t+5=0
a = 6; b = 13; c = +5;
Δ = b2-4ac
Δ = 132-4·6·5
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*6}=\frac{-20}{12} =-1+2/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*6}=\frac{-6}{12} =-1/2 $
| -5x-1=-4x+3 | | 6(0)-3y=21 | | (x+10)+(2x+4)=x | | 8r+2=-70 | | 25m-10=125 | | 3x-1+3x+6+34-2x+5x-18=40 | | -9+b/2=-6 | | x/7+x=56 | | 4/5x+8=29+1/5× | | 14-(3a-2)=14-3a-2 | | 82+9x+1+61=180 | | 99z+161=656 | | -7(1/8)x-3.4=20 | | 2x^+3x+30=2x^+8x+5 | | 7.6(x-1.5)=15.2 | | 2(x+10)+3x=60 | | -7×1.8x-3/4=20 | | 2x-1=-1x=7 | | 75+63+x=180 | | 9x-31=74 | | 2500=1957+2115+780+3225+x/5 | | 3-4m=-4m | | (4x÷3)-8=12 | | 12x+24=348 | | 5(n+4)-(n+7)=-1 | | 4.05(6.03x-17.95/3.21)-23.98=42.81 | | 2(5+4x)=42 | | 15x=12+6x=19x+2 | | 9x+11=11-2x | | 11x-3x+6=5x-12 | | 1,75=60l/25500 | | 2w=24 |