If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2=30
We move all terms to the left:
6p^2-(30)=0
a = 6; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·6·(-30)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*6}=\frac{0-12\sqrt{5}}{12} =-\frac{12\sqrt{5}}{12} =-\sqrt{5} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*6}=\frac{0+12\sqrt{5}}{12} =\frac{12\sqrt{5}}{12} =\sqrt{5} $
| 5/3a=3/a | | F(10)=3x^2+9x-12 | | 19+-2x=3x-1 | | 3/4x=87 | | 3(x | | 2x+7/6=(5/3)x+x | | 16x²-20x-6=0 | | 6x+11=216x+11=21 | | 24x-33=0 | | 10r+2(r+4)=-24 | | 8a=60 | | 9.50-x=13.50 | | 6t-23=-7-4t | | -2x-5x=-4x+2 | | 3(x+0.4)=-3.9 | | 4/5(x−5/8)=13 | | 45 (x−58 )=13 | | -2/3x=45 | | 14=-11y-3 | | -2(2a+6)=-18 | | +8+x=17 | | 7-2x19=0 | | 34a-29a-2a-a-a=31 | | 9(z+2)=18 | | 14u+11u+9u-33u=17 | | 3(m-2)=42 | | 34y-34y+y=46 | | --2n+2(3n+14)=-20 | | 5a-5a=15 | | -50=-10(d+36) | | 0.5y+2.5+7.5y=34.4-3.9 | | 81x^-192=0 |