If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+11p-10=0
a = 6; b = 11; c = -10;
Δ = b2-4ac
Δ = 112-4·6·(-10)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-19}{2*6}=\frac{-30}{12} =-2+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+19}{2*6}=\frac{8}{12} =2/3 $
| 2y+-9=-3 | | 8-7x/2=14 | | 40/10=x/10 | | -(x-2)^3=0 | | 5x=2,310 | | 1/9(x+18)-1/6(x-6)=x-8 | | -3v+-3=-15 | | 3z+-4=-34 | | 0.2x=1,6 | | 11-3(3x-4)=10x-4 | | 7a3=11a | | 11-3(3x-4)=2(5x-4) | | 3x+5/2=8 | | x4−8x3+17x2−8x+1=0 | | 3x+5/3=8 | | 2y^2+6y-10=0 | | (x−4)(x−5)(x−6)(x−7)=1680 | | 6x+3(x+4)=0 | | 140x=95 | | -(-4+2y)+2y=4 | | 1/64=8q | | 3b/6=2b=10 | | 3b +2b = 106 | | 0.22x^2+3.3x+30=0 | | -13x-37=11-7x | | x+3=3x-8 | | 3y-5÷2+1=1y÷2+3 | | t −9 = 119 | | 4x+33+7=3x+30+5 | | 11x+5=15x-7=45 | | 11x+5=13x-7=45 | | -y=-41 |