6p-2(6-2p)=5(p-4)-42

Simple and best practice solution for 6p-2(6-2p)=5(p-4)-42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6p-2(6-2p)=5(p-4)-42 equation:


Simplifying
6p + -2(6 + -2p) = 5(p + -4) + -42
6p + (6 * -2 + -2p * -2) = 5(p + -4) + -42
6p + (-12 + 4p) = 5(p + -4) + -42

Reorder the terms:
-12 + 6p + 4p = 5(p + -4) + -42

Combine like terms: 6p + 4p = 10p
-12 + 10p = 5(p + -4) + -42

Reorder the terms:
-12 + 10p = 5(-4 + p) + -42
-12 + 10p = (-4 * 5 + p * 5) + -42
-12 + 10p = (-20 + 5p) + -42

Reorder the terms:
-12 + 10p = -20 + -42 + 5p

Combine like terms: -20 + -42 = -62
-12 + 10p = -62 + 5p

Solving
-12 + 10p = -62 + 5p

Solving for variable 'p'.

Move all terms containing p to the left, all other terms to the right.

Add '-5p' to each side of the equation.
-12 + 10p + -5p = -62 + 5p + -5p

Combine like terms: 10p + -5p = 5p
-12 + 5p = -62 + 5p + -5p

Combine like terms: 5p + -5p = 0
-12 + 5p = -62 + 0
-12 + 5p = -62

Add '12' to each side of the equation.
-12 + 12 + 5p = -62 + 12

Combine like terms: -12 + 12 = 0
0 + 5p = -62 + 12
5p = -62 + 12

Combine like terms: -62 + 12 = -50
5p = -50

Divide each side by '5'.
p = -10

Simplifying
p = -10

See similar equations:

| logx+logy=5 | | 5x-10=8+2x | | 10Y=7x-280 | | 5x-7=6x+12-x | | (a+18)(a-21)=0 | | 12v^2-62v-60=0 | | 9a^3+91a^2+90a=0 | | 7r-15/s-11 | | 28r^2+236r+96=0 | | x^2-37x+34=0 | | 2x+4y-2z+3r+4s=0 | | 3v^2+12v-135=0 | | 9r^3+50r^2-24r=0 | | x+2y-4z+3r-s=0 | | -3(3x-9)=-(2x-5) | | 14k^3-130k^2-100k=0 | | 15n^2-162n+243=0 | | (-3x-3)/2 | | -3x-3/2 | | -(4x+5)=-2(6x+7) | | 5p^2-35p+60=0 | | 5p^2-35p-150=0 | | 5y^2-4y+8y^2-6y= | | (s/t^2)/(s^2/t) | | 7s^2+22st+3t^2=0 | | 2/7-3/5/2/3 | | -x+6=55-2x | | y=2/9x-1 | | 27a^3+64=0 | | -4/9x=-4/9x+17 | | y+5-2=x | | 11b^2-59bv-42v^2=0 |

Equations solver categories