If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2-18m=0
a = 6; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·6·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*6}=\frac{0}{12} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*6}=\frac{36}{12} =3 $
| .r,2.4;r=16.8 | | -w/4.3=2.8 | | 1/2m+8=62 | | 5(2x+7)=-25+41 | | –6+8b=7b | | 14=3(u-2)-8u | | 8v+5-3v=25 | | 3(4x+7)=-10+19 | | 22+3r=48 | | 8(5c+3)=104 | | -4(-6w+7)-9w=5(w-3)-7 | | 3x+9-5x=27 | | 99=33x+3(3x+5)* | | k+50=-100 | | 11=6x+3-6x | | 6(-6b+5)=246 | | –0.4=0.4(m+5) | | 2x+1/x=8 | | 2(10b+10)=–10+10b | | 0.2(d-2.3)+-9.8=-9.22 | | -16^2+320t=0 | | 4x-14=3(x-5) | | ¼=3x/10 | | |x=9 | | 2.57(d-6)=2.47 | | 0=-16t^2+320t | | 2(y−7)=4 | | 1.2(u+7.2)=1.92 | | 5x−7=48 | | (395-y)+y=395 | | 3*10^{2y}=3,600 | | m=4/71=m |