If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m(2m+9)+5m=(1-3m)
We move all terms to the left:
6m(2m+9)+5m-((1-3m))=0
We add all the numbers together, and all the variables
6m(2m+9)+5m-((-3m+1))=0
We add all the numbers together, and all the variables
5m+6m(2m+9)-((-3m+1))=0
We multiply parentheses
12m^2+5m+54m-((-3m+1))=0
We calculate terms in parentheses: -((-3m+1)), so:We add all the numbers together, and all the variables
(-3m+1)
We get rid of parentheses
-3m+1
Back to the equation:
-(-3m+1)
12m^2+59m-(-3m+1)=0
We get rid of parentheses
12m^2+59m+3m-1=0
We add all the numbers together, and all the variables
12m^2+62m-1=0
a = 12; b = 62; c = -1;
Δ = b2-4ac
Δ = 622-4·12·(-1)
Δ = 3892
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3892}=\sqrt{4*973}=\sqrt{4}*\sqrt{973}=2\sqrt{973}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{973}}{2*12}=\frac{-62-2\sqrt{973}}{24} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{973}}{2*12}=\frac{-62+2\sqrt{973}}{24} $
| 13/9=5/n | | –19+19b=16b+20+16b | | 0.01y^2-0.14y=-0.24 | | 9x+3=3×+9 | | 3r-24=-r | | 3r-24=-r | | 3r-24=-r | | 3r-24=-r | | 3r-24=-r | | 1000=x+(0.18*x) | | 11p-9-8p-7+14p=12p+9p+11-7 | | 11p-9-8p-7+14p=12p+9p+11-7 | | |n|-3=39 | | |n|-3=39 | | |n|-3=39 | | 0=5-0.7*x | | n/4+5=13n= | | n/4+5=13n= | | n/4+5=13n= | | n/4+5=13n= | | 2x+3x=23+5 | | 2x+3x=23+5 | | 2x+3x=23+5 | | 2x+3x=23+5 | | 2x+3x=23+5 | | 2x+3x=23+5 | | 2x+3x=23+5 | | 12-5x=16.6 | | 2-50=30x=5 | | 9z+8=-10 | | 3x(x-2)+3x(2x+1)=0 | | 0.12x60=7.2 |