6k(k+3)=2(4k+5)

Simple and best practice solution for 6k(k+3)=2(4k+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6k(k+3)=2(4k+5) equation:



6k(k+3)=2(4k+5)
We move all terms to the left:
6k(k+3)-(2(4k+5))=0
We multiply parentheses
6k^2+18k-(2(4k+5))=0
We calculate terms in parentheses: -(2(4k+5)), so:
2(4k+5)
We multiply parentheses
8k+10
Back to the equation:
-(8k+10)
We get rid of parentheses
6k^2+18k-8k-10=0
We add all the numbers together, and all the variables
6k^2+10k-10=0
a = 6; b = 10; c = -10;
Δ = b2-4ac
Δ = 102-4·6·(-10)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{85}}{2*6}=\frac{-10-2\sqrt{85}}{12} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{85}}{2*6}=\frac{-10+2\sqrt{85}}{12} $

See similar equations:

| Y+5-20+(y×-3)=50 | | 13/x=20/100 | | u+2.94=4.28 | | 26/65=x/100 | | -8x-2(-5x+1)=-(-2x-10 | | 5+9x=59 | | 8x-3.68+28x+24.92=266 | | 8(2x+9)-16x=56 | | 71-9x=53 | | 2.5(×+2)+4.5+1.5(x-3)=15 | | 7-4(x+8)=9 | | x+.1x=8584 | | 0.23n=2.773n-5 | | v-9.9=3.93 | | 15+c=2c-56 | | 2/3a+1/2=21/2 | | 0.25x-50=240 | | 9.9n=0 | | 5x-3(x-1)-14=-(x-1) | | 25p-1+28p=3+35p | | 5x+4=4x=1 | | 3x+7=5x-15+51-x | | X=4p+4p3 | | 16x-7x=54 | | 1/1.0102x10^-12=9.9x10^11 | | -2=1/3(9x+18)-7x | | 3x+7(x+1)=2(6x+5)−2x | | -2(m-4)=-10 | | 26=-p+20 | | 2y+30=64 | | 63-3(3-10x)=150 | | Y=8-r |

Equations solver categories