6d-24=11d(-18d+54)

Simple and best practice solution for 6d-24=11d(-18d+54) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6d-24=11d(-18d+54) equation:



6d-24=11d(-18d+54)
We move all terms to the left:
6d-24-(11d(-18d+54))=0
We calculate terms in parentheses: -(11d(-18d+54)), so:
11d(-18d+54)
We multiply parentheses
-198d^2+594d
Back to the equation:
-(-198d^2+594d)
We get rid of parentheses
198d^2-594d+6d-24=0
We add all the numbers together, and all the variables
198d^2-588d-24=0
a = 198; b = -588; c = -24;
Δ = b2-4ac
Δ = -5882-4·198·(-24)
Δ = 364752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{364752}=\sqrt{144*2533}=\sqrt{144}*\sqrt{2533}=12\sqrt{2533}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-588)-12\sqrt{2533}}{2*198}=\frac{588-12\sqrt{2533}}{396} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-588)+12\sqrt{2533}}{2*198}=\frac{588+12\sqrt{2533}}{396} $

See similar equations:

| 3+(m-9)=4m-7(m+2) | | 7/3y+5=19 | | 3×-7x=-3+-6 | | 21/3y+5=19 | | 3×-7x=-3+6 | | 2.5/4=7.5c | | 7(s-5)=9 | | 5×(7-6)-n=19 | | 4x-325=8 | | 6(11-x=2(3+2x) | | -4/3(9-2x)=1/2(1/3x+1) | | -12+8/3k=1/6k+1/2 | | 0.22(x-14)+0.07(x+13)=3.26 | | (44p+44)-4p=28p-28 | | |x-4|+7=9 | | 3/4x-1/4=1/3x+2/3 | | 5.6x+1.24=4.2x+8.69 | | 6(k-2)-6=4k-(3k-1) | | (x+7)^3/2=27 | | 3/4a-1/4=1/3a+2/3 | | 12.6=6-a/5 | | 5+2f(5)=12 | | 5a+7=8a-5 | | 3a-10=4(a+1)+16a+6 | | 5x+7(0.75)=10.25 | | 16(-3x+10)=-6(5x-6) | | 3(z+11)^2-120=0 | | 80/x+4+80/x-4=500/60 | | 17u-13u-10=-20 | | 5x^2-96x-20=0 | | 5(2x+3)=4(6x+1) | | 11x-2x^2=15 |

Equations solver categories