If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2-9a=0
a = 6; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·6·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*6}=\frac{0}{12} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*6}=\frac{18}{12} =1+1/2 $
| 3x/2+89=83 | | x/4.8=2 | | -8(2-7m)=-128 | | x/57=7/10 | | t+4/4=20 | | x/12+5/3=5/3 | | 5x-18=48 | | 7(x=3)+3(4-x)=-8 | | 10m−6m=4 | | 4.3(x-1.7)=41.94 | | 3t-6=2t-1 | | 9z−5z=16 | | |3x+4=9| | | 9=s+3.75 | | 23y+135=18y | | x/6=3.1 | | 7x+9=9x−3 | | 142=-4n+6(6n-3) | | 5(4x-1)-24=4(5+x) | | 4=-3-5x | | c+21-11=100 | | 3g=19+5 | | MP=5x+3° | | z÷3.5=0.4 | | MP=(5x+3)° | | 6=5-4x | | 4b-71=5 | | -6x+-12=30 | | c/10+4=13 | | x-2.7=4.4 | | 3(2n+9)=-15 | | 15x=1.5x^2 |