If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2+19a+10=0
a = 6; b = 19; c = +10;
Δ = b2-4ac
Δ = 192-4·6·10
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*6}=\frac{-30}{12} =-2+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*6}=\frac{-8}{12} =-2/3 $
| 4.32+4.9m=5.8m | | 2^x=50 | | 23=c+20 | | (7/y)+7=1/y | | 5x-5+3x-1=x | | -0.01x^2+x+50=0 | | -29=x-9 | | 3m=9m-8/5 | | x+9/2=-10 | | X^2-7x+3=O | | 7-(4p+3)=3(p+2) | | |3x+15|=9 | | 0.15(x+50)-0.05(x-20)=13.5 | | 3x+12=92 | | 46x=400 | | (8-2.96)÷3=x | | -5x+6=4x+33 | | 2a+25=57 | | 5(3-7x)=-405 | | x+(x+27)+(180-67)=180 | | r^2=225 | | (6x-10)/2x=2 | | (2x^2)+(3x-5)=90 | | x+39+116=180 | | 1/3(3a-15)=3(2a+5) | | 5(2x+1)x-5x=-30 | | -4(4x+9)=108 | | 6g+7=49 | | 6-x+5x=-14 | | -18-8x=-2(5+4x) | | 8y–5=23 | | -100-5x=-30 |